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A one-dimensional singular integral equation which appeared in a previous paper on 

random rough surface scattering theory (J. Math. Phys. 13, 1903 (1972)) is solved 
numerically using quadratic splines. Its solution yields an approximation to the co- 
herent (specular) scattered intensity for plane wave incidence on the surface. This 
approximate scattered intensity is plotted versus the Rayleigh factor 1 = k, D cos 0, , 
where k, is the wavenumber of the incident plane wave, u is the surface root mean 
square height, and Bi is the angle of the incident plane wave. For values of C > 1 this 
approximation yields more coherent intensity than the Kirchhoff approximation. 

1. INTRODUCTION 

Some recent papers [l-3] have considered scattering from a Gaussian distributed 
random rough surface. Feynman diagramlike techniques were used to simplify 
the resulting integral equations for the moments of the surface Green’s function, 
and to systematize the approximations to these equations. In particular, an integral 
equation, called the Dyson equation, was derived for the first moment (mean) 
of a function linearly related to the surface Green’s function. Using the planar 
translational invariance of the problem, this Dyson equation was written as a 
one-dimensional singular integral equation. Its solution is complicated by the 
fact that the Born (or inhomogeneous) term and the kernel of the equation are 
(related) inhnite series of terms (connected diagrams) which are not known in 
closed form. In this paper we study numerically the lowest order approximate 
solution of this Dyson equation obtained by approximating the Born term and 
the kernel by the first term in their series expansion. This yields an integral equation 
of the following form [4] for the scattering amplitude 7+ 

where k, , k,', etc., are the z-components of wavenumbers, K2 = koz - kLz, with 
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k9 the wavenumber of the plane wave incident on the surface and ki the transwxse 
component of the wavenumber vector, i.e., k, = (k, i k,). Here the dependenz 
of the function T+ on k, and kL is suppressed. P indicates the Cauchy princcipte 
value distribution, and the iimit E + Of is understood, The characteristic fun3nctl:cn 
C(k,) of the Gaussian surface distribution is given by 

C(k,:) = exp[-(l/2) Gkz”], {’ 7 j :.--- I 

where D is the root mean square height of the surface. The function C&j is the 
first term in the infinite series expansion of the Eorn term and the kernel of the 
exact Dyson equation, and the approximation ~~(k, ) k,‘) :a C(k, - k,‘) y&ids 
the Kirchhoff approximation [5]. We want to calculate the specular (coherent) 
intensity I given by 

I@, I kiJ = / 7+(K, --Ky qlr, - kiJ 13) 

for a wave scattered in the k, direction due to an incident wave in the ki, direction. 
Here 6jk,) stands for the two-dimensional (transverse) Dirac delta function, and 
the functional value 7+(K, --K) is found by putting the solution of (1) ‘“on-sheh,” 
i.e., by setting k, = K and k,’ = -K. This brief introduction is intended only to 
summarize the background. A complete discussion can be found in Ref. ]I]= 

In Section 2 we discuss the numerical solution of (I) using scaling and a quadratic 
spline approximation. The numerical results are presented in Section 3, where 

j T+ 1% is plotted versus the parameter Z = k,cr cos Oi ~ 6ii being the incidence 
angle of the plane wave. Although w-e confine our discussion to the scalar case 
for a hard (Neumann) boundary [ 1], similar matrix sets of equations arise ir 
elastic media -with a stress-free random boundary [2b and in eiectrcmagnetic 
media with a perfectly conducting random boundary [3]. 

2. NUMERICAL SOLUTION 

In this section we discuss the numerical solution of (I). First, scale the equation. 
That is, consider K to be a fixed parameter of the problem, and scale the other 
parameters in the equation with respect to K. Define 5 by 

with the on shell value 5 == 1. Substituting (4) in (1) and setting 
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we write (1) as 

and, from (3), we wish to calculate 1 T(1, -1)j”. Rewrite (7) so that the kernel 
will have three principal value singularities by using the operator relation [6, 71 

(‘p - 1 - i+1 = P((“” - 1)-l + (7Ti/2)(6(k” - 1) + S(F + I)], (8) 

so that (7) becomes 

(9) 

Letting successively 4 = $1 and 5 = -1 in (9), algebraically “solving” the 
resulting set of equations for T(1, c) and T(- l? 4’) in terms of still unknown 
integrals and resubstituting the results into (9) yields the result 

where the Born term B is defined as 

w, ‘53 = Co(ct - I’) + 4Cd5 - UK3/2) Cdl - c?> - m Gl(2) Cdl + 01 

- at + 1NW) Cdl f ‘2’) i- UPI C”(2) Go - 5’)k (11) 

with 
d = 2[3 + C;(Z)]-I. (12) 

Hence, we want the solution of (10) in order to calculate I T(1, -1)j”. 
To solve (10) numerically, we make use of the following observation: 

Let m > 2 be an even integer, h = l/m, L at? irlteger >I, N = mL, & = kh for 
k = 0, &l, f2 ,..., &N so that L=Eiv, --L=tdN, O=(,,, l=Tm, and 
- 1 = <--,E . Let y(y) be a real ftlnction defined on C-L, L], and define for 
--L<J’\(L 

MJ4 = 5 vJ,o3 dY)~ 
7+-N 

where each quadratic spline s,( JJ) is dejtjed in [-L, L] as follows [8]: 
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Now, given the integral equation (lo), with the unknown function T and peram 
eter E’, shoose m and L as above and replace (IO) by 

with singularities at 0, 1, and - 1. Let II, It’, and f,(ic = 0, *I?..., ,N> be as 
above. For each .$, 4’ we regard B(<, [“j I-(,$“, C) in (13) as the sj( ;J) of the abc?ve 
observation, and we replace it by S,(y). Thus, (13) is replaced by 
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with 

.r L 

aL = P &9 ($ 

-L y(y” - 1) ’ 
k = 0, fl, f2 ,..., *N. (15) 

Next, set the parameter [’ = - 1 since we only need T([, -1). To solve (14) 
numerically, set there 8 = & (j = 0, fl, &2,..., &N), and obtain the system 
of 2N + 1 linear equations in the 2N + 1 unknowns T(Ej, -1): 

(16) 

where, for j, k = 0, 51, 52 ,..., &N, 

bjl, = (7~i)-l a,B(& , &) - Sj, , (17) 

&. being the Kronecker delta 

aj, = I:, for j = k, 
for j # k. 

We can derive from our definition of the a&: 

a, = 0, 

a-, = -ap , k = 1, 2 ,..., N. 

Performing the integrations (15) (assuming m > 4) we obtain 

(a) If k is odd, k > 0 

a, = - (2h2)-l [l - (k + 1) h][l - (k - 1) h] In{[l - (k + 1) h]/[l - (k - 1) h]) 

- (2h”)-l [l + (k + 1) h][l + (k - 1) h] ln{[l + (k + 1) h]/[l + (k - 1) 121) 

+ (k* - 1) ln((k + I)/(k - I)>. 

(b) If k is even, 2 < k < ?n - 2 or 172 + 2 < k < N - 2, 

ai, = (3/2h){(l - kh) In(1 - kh) - (1 + kh) In( 1 -1 kh)} 

+ 3k In(M) + (1/2)(k - 2)(k - 1) In[(k - 2) h] 

- (1/2)(k + 2)(k + 1) 1nKk + 2) 4 
+ (4/~7-~ ([I + (k + 1) A][1 + (k + 2) h] In[l + (k + 2) Izl 

+ [l - (k + 1) 12][1 - (k + 2) h] In[l - (k f 2) h] 

- [l -t (k - 1) h][l + (k - 2) h] ln[l + (k - 2) hl 

- [I - (k - 1) h][l - (k - 2) h] ln[l - (k - 2) h]), 
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a,, = (ZP)-’ ((2 + A)(1 + 12) ln(1 + h) - (2 - h)(l - h) In(l - h) 

+ (1 - h)(l - 212) ln(1 - 2h) - (1 + 1?)(1 -r 211) In(h + 2/I)}, 

a,+, = & 3 In 2 + (2&7-l (‘F(1 + 3/2)( 1 & 411) In(l i 4hj 

- 6/1(1 + k) ln(1 & h) + (2 & 1312 + 18P) tnil Iti 2h)j, 

QN = + (4h”)-1 [(iv + 2) h + l][(N + 1) h + I] ls{[NA + l]/&V i 2) h + r]) 

+ (4h”)-1 [(N + 2) h - l][(N + I) h - I] h?{[IW!l - F]/[(N + 2) h - I];, 

- (212--l (iv + 2)(N + 1) 122 ln(N/(N + 2)). 

Using these values for the a2. , (16) was inverted taking zi: = 6 and N = 30. 
The results are discussed in the next section. 

3. NUMERICAL RESULTS 

Figure 1 is a plot of the natural logarithms of 1 T(l, -I)jii7 B2(1, -I) and C;l(2) 
versus the parameter .Z = k,o cos Bi for Z varying over [O, 21. L’ is call& t5e 
Rayleigh roughness parameter [5]. The function C,,“(Z) = expf-,P) is the 
Kirchhoff approximation to the specular (coherent) intensity [5]. The function 
B(l, -1) was derived by removing the singularities in onr original integral equation 

FIG. i. Plot of the natural logarithms of 1 T+(l, -Iii’, B’(1, -1) 2nd C,“(2) versus S == 
k, 3 cos 0, 
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and is defined by (11). T(1, -1) is an approximate solution of (10) and was 
obtained by solving (16). Its relation to our original amplitude 7-t is given by (5). 

The results indicate that the removal of the singularities to generate a new 
inhomogeneous term of the integral equation (i.e., going from C,, in (7) to B in 
(10)) has no great effect, at least on shell, since C,(2) and B(l, -1) are nearly 
equal over the full range of L: Indeed, up to about Z = 1, solving the integral 
equation makes no appreciable difference in the resulting coherent intensity. For 
larger values of 2, however, there is considerable difference in T and B. Thus, the 
Kirchhoff approximation for the coherent (specular) intensity yields virtually the 
same results as our lowest order approximate solution of the Dyson equation, 
T(1, - l), up to 2 = 1. For LY > 1, T(1, - 1) yields more coherent (specular) 
intensity than the Kirchhoff approximation. 
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